A Framework for Early and Approximate Uncertainty Quantification of Large System Simulation Models
نویسندگان
چکیده
Uncertainty Quantification (UQ) is vital to ensure credibility in simulation results and to justify model-based design decisions – especially in early development phases when system level measurement data for traditional model validation purposes are scarce. Central UQ challenges in industrial applications are computational cost and availability of information and resources for uncertainty characterization. In an attempt to meet these challenges, this paper proposes a framework for early and approximate UQ intended for large simulation models of dynamical systems. A Modelica simulation model of an aircraft environmental control system including a liquid cooling circuit is used to evaluate the industrial applicability of the proposed framework.
منابع مشابه
The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study
Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...
متن کاملUncertainty Quantification in Complex Systems Using Approximate Solvers
This paper proposes a novel uncertainty quantification framework for computationally demanding systems characterized by a large vector of non-Gaussian uncertainties. It combines state-of-the-art techniques in advanced Monte Carlo sampling with Bayesian formulations. The key departure from existing works is the use of inexpensive, approximate computational models in a rigorous manner. Such model...
متن کاملAccurate Uncertainty Quantification Using Inaccurate Computational Models
This paper proposes a novel uncertainty quantification framework for computationally demanding systems characterized by a large vector of non-Gaussian uncertainties. It combines state-of-the-art techniques in advanced Monte Carlo sampling with Bayesian formulations. The key departure from existing works is the use of inexpensive, approximate computational models in a rigorous manner. Such model...
متن کاملApplication of truncated gaussian simulation to ore-waste boundary modeling of Golgohar iron deposit
Truncated Gaussian Simulation (TGS) is a well-known method to generate realizations of the ore domains located in a spatial sequence. In geostatistical framework geological domains are normally utilized for stationary assumption. The ability to measure the uncertainty in the exact locations of the boundaries among different geological units is a common challenge for practitioners. As a simple a...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کامل